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Abstract

Recent studies of liquid films driven by competing forces due to surface ten-
sion gradients and gravity reveal that undercompressive traveling waves play an
important role in the dynamics when the competing forces are comparable. In this
paper we provide a theoretical framework for assessing the spectral stability of
compressive and undercompressive traveling waves in thin film models. Associated
with the linear stability problem is an Evans function which vanishes precisely at
eigenvalues of the linearized operator. The structure of an index related to the
Evans function explains computational results for stability of compressive waves.
A new formula for the index in the undercompressive case yields results consistent
with stability.

In considering stability of undercompressive waves to transverse perturbations,
there is an apparent inconsistency between long-wave asymptotics of the largest
eigenvalue and its actual behavior. We show that this paradox is due to the unusual
structure of the eigenfunctions and we construct a revised long-wave asymptotics.
We conclude with numerical computations of the largest eigenvalue, comparisons
with the asymptotic results, and several open problems associated with our find-
ings.



1 Introduction

Driven films exhibit a variety of complicated dynamics ranging from rivulets and saw-
tooth patterns in gravity driven flows [JdB92, SV85] to patterns in spin coating [FH94|
and surfactant driven films [TWS89]. A theoretical framework for these problems is
provided by a lubrication approximation of the Navier-Stokes equations [MW99, Gre78].
This yields a single partial differential equation for the film thickness as a function of
position on the solid substrate and time.

For directionally driven films, the driving force enters into the lubrication approxi-
mation as the flux f in a scalar hyperbolic conservation law u;+ (f(u)), = 0. Here u > 0
is the film thickness and z is the direction of the driving force. For gravity driven flow on
an incline, the tangential component of gravity yields a flux proportional to u3 [Hup82].
For surface-tension gradient driven flows f is proportional to u? [CHTC90]. In each of
these cases, the flux is convex. Consequently, driven fronts in the film correspond to
compressive shock solutions, whose simplest form is

u_, if =< st,
U, if > st,

u(z,t) = { (1.1)

in which the shock speed s = (f(u_) — f(uy))/(u_ — uy ) satisfies the entropy condition

Fllus) <s < f{u); (1.2)

equivalently, characteristics enter the shock on each side. Small variations in height near
a compressive shock are propagated towards the shock from both sides.

In practice, the discontinuous fronts (1.1) are smoothed by diffusive effects, primarily
through surface tension. In the lubrication approximation, surface tension appears as a
fourth order nonlinear regularization of the conservation law, but there is also second
order nonlinear diffusion induced by the component of gravity normal to the incline,
leading to the equation

u + (f(u)e = =7V - (W¥¥VAU) + BV - («*Vu). (1.3)

In this equation, v > 0 and 8 > 0 are constants. The shock waves (1.1) correspond to
smooth traveling wave solutions of (1.3); for small 8 > 0, they typically have oscillatory
overshoots and undershoots on either side of the shock. Additionally, the nonlinearity
in the fourth order diffusion causes a single very pronounced overshoot or ‘bump’ on the
leading edge of the shock (see Fig. 1a); this structure is often referred to as a capillary
ridge in experiments. Capillary ridges produced by surface tension are well known to
be linearly unstable to long-wave perturbations in the transverse direction of the flow,
producing the well-known fingering instability [CC92, THSJ89, KT97, YC99]. The effect
of larger (3 is to suppress the bump (see Fig. 1b). The disappearance of the bump (for 3
sufficiently large) is accompanied by a transverse stabilization of the wave [BB97].
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Figure 1: Compressive traveling waves for the flux f(u) = u°, connecting u_ =1 to u,
for three values of u,. (a): =0, v = 1. All waves are linearly unstable to transverse
perturbations. (b): § =5, v = 1. The waves with v, = 0.1,0.01 are linearly stable to
transverse perturbations.
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Experiments with doubly driven film flow, in which gravitational and surface ten-
sion gradient stresses are competing, have uncovered some new phenomena. While very
thin films produce the characteristic capillary ridge followed by a fingering instability
[CHTC90], thicker films produce a wider capillary ridge that continues to broaden. Fur-
thermore, the front, or leading edge of the film, remains planar; it does not experience
fingering [BMFC98, KT98|.

The lubrication approximation for this problem yields an equation of the form (1.3)
with a non-convex flux

fu) = u® — . (1.4)

Numerical experiments [BMS99, MB99, M99] and analysis [BS99] with § small show
that the experimental observations can be explained by the presence of undercompres-
stve shocks. In particular, while weak jump initial data give rise to compressive waves,
moderately strong jumps can evolve into a double shock structure in which the lead-
ing shock is undercompressive: the speed s of the shock violates the entropy condition
(1.2). The trailing wave is compressive and travels at a slower speed. For stronger initial
jumps, the solution evolves as a rarefaction wave connected to an undercompressive wave
[MB99]; this structure explains discrepancies between earlier thin film experiments [LL]
and analysis based on the classical theory of conservation laws, which considers only
compressive waves. The presence of undercompressive shocks is due to the combined
effects of the non-convex flux and the fourth order diffusion. Moreover, numerical com-
putations [MB99] confirm that the undercompressive leading wave is linearly stable to
transverse perturbations, while the stability of the compressive shocks depends on the
absence of a capillary ridge.



The numerical simulations of [BMS99] also reveal a complicated relationship between
initial condition/far field boundary condition and asymptotic behavior of solutions. More
specifically, for a range of far-field boundary conditions, the asymptotic solution could
either be one of a number of compressive travelling waves (see e.g. Figure 2), or it could
approach the two-wave structure described above, with an undercompressive leading
front. The specific asymptotic solution that emerges in this case depends on the shape
of the initial data u(z,0). For other far-field boundary conditions, only the two-wave
structure is realized asymptotically, irrespective of the shape of the initial data.

In this paper we consider traveling wave solutions u(z, y,t) = w(x — st) of the general
equation

u + f(u), = V- (b(w)Vu) — V- (c(u)VAu), (1.5)

in which we assume
(HO) f7 b7 cE 027
(H)e>n>0,6>0
while keeping in mind the special case studied in [BMS99], corresponding to:

flu)=u® —u®, bu) =pu’, c(u) =yu’, B20,7>0. (1.6)

The existence of traveling waves is itself an interesting problem. For convex fluxes,
the existence of traveling waves can be proved by a shooting argument as in [KH75] or
using topological methods involving the Conley index as in [Ren96, BMS99]. The case of
a non-convex flux such as (1.4) is more complicated. In particular, the phase portrait for
the resulting traveling wave ODE can have more than two equilibria and the possibility
of multiple heteroclinic connections, including undercompressive ones. A recent proof
of existence of undercompressive waves for the case (1.5, 1.6) with sufficiently small
D = li/s > 0 was given in [BS99]. Moreover, non-existence of undercompressive waves
for large D was also established. Numerical results exploring the effect of varying D over
a large range are explored in [M99].

In this paper, we focus on issues concerning the stability of travelling wave solutions
of (1.5). In Section 2, we consider stability to one-dimensional perturbations, and in
Sections 3 and 4 we consider multidimensional stability.

A stability theory based on the Evans function [E, AGJ1, PW] has been developed for
dynamical systems. These ideas led naturally to the study of one-dimensional stability
of travelling waves, including systems of conservation laws with second order diffusion
[GZ, ZH] and for scalar conservation laws with second order diffusion and third order
dispersion [D, HZ.2, Z.3]. Undercompressive waves arise in both cases. In this paper, we
construct the Evans function for the scalar equation (1.5), in which undercompressive
waves are generated from the non-convex flux and fourth order diffusion.

In Section 2, following the general approach of [GZ], we find a formula for an index
I' related to the Evans function. When I' is negative, the travelling wave is unstable,
since the presence of a positive growth rate is predicted. When positive, the index is
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Figure 2: Compressive travelling waves for (1.6) with § = 0 and v = 1, connecting
u_ &~ 0.332051 to uy = 0.1. Waves numbered 1,3, and 5 are numerically stable in
one space dimension, while waves 2 and 4 are unstable. All waves are unstable to
multidimensional perturbations. For this special value of u_ there are an infinite number
of compressive waves connecting to u. .



an indicator of stability. (The index only predicts the parity of the number of unstable
eigenvalues or positive growth rates; when the index is positive, we are assured only
that there are an even number of unstable eigenvalues, not that there are none.) The
geometry underlying this index is used in Section 2 to explain the following numerically
observed feature: when there are multiple compressive waves for the same upstream
and downstream thicknesses, the waves come in pairs, one stable and one unstable to
one-dimensional perturbations. An interesting open problem is to give a rigorous proof
of stability. Such a proof would require further bounds on potential unstable eigenvalues
(perhaps by a variant of Grillakis’ method, as in [PW, AGJS, D, P]).

For undercompressive waves, the index requires special treatment due to the behavior
of eigenfunctions associated with the linearization about the travelling wave. In this case
we derive a new simple expression for the index that we calculate easily from pictures
of numerical results. This reduction turns out to be necessary for practical evaluation
of the Evans function index in the case of traveling waves for higher order problems. It
is an improvement over the general theory developed in [D, GZ] and directly extends to
arbitrary order systems.

The difference between the compressive and undercompressive cases appears even
more forcefully in the consideration of multidimensional stability. In Section 3, we outline
the framework for a study of stability to two-dimensional perturbations. We focus on
long-wave perturbations, and show numerically in Section 4 that compressive waves
are unstable, in agreement with long-wave asymptotics developed in Section 3 (and
also in [BB97, KT98]). However, when considering undercompressive waves, there is a
mathematical puzzle we call the long-wave paradoz: a formal calculation [KT98, BB97] of
the low-frequency (long-wave) expansion of the growth rate of fingering perturbations as
a function of spatial frequency yields an explicit formula for the leading order asymptotics
of the growth rate of perturbations at long wave lengths. While this asymptotic formula
agrees well with computed eigenvalues in the case of compressive waves, it fails for
undercompressive waves. In Section 3 we resolve the long-wave paradox by showing
how, for undercompressive waves, the formal calculation overlooks an interesting feature
of the linearized problem. In Section 4, the resolution of the long-wave paradox is used to
interpret numerical calculations of growth rates, demonstrating that undercompressive
waves are stable to transverse perturbations.

In Section 4, we also identify a curious feature of the growth rates. For parameter
values for which there is an undercompressive wave, there are also multiple traveling
waves, and moreover, the double shock structure collapses; the trailing compressive wave
and the leading undercompressive wave have the same speed. The graphs of the growth
rates (as a function of wave number) for the (unstable) compressive waves approach the
maximum of the growth rates for the undercompressive wave and the compressive trailing
wave. We interpret this observation in terms of the linearized equation, by observing
that the trajectories of the compressive traveling waves approach a combination of the
trajectories for the undercompressive wave and the trailing compressive wave.



2 The One Dimensional Case

To begin with, we consider solutions v = u(z,t) of equation (1.5) that are independent
of y:

w4 F@)a = (b(u)er)s — (e(u)tars)s- (2.1)

Suppose there is a traveling wave solution, which (by adding a linear term to f, f(y) =
f(y) — sy,) we may take to be stationary:

u(z,t) = u(z) (2.2)

Then u = u(x) satisfies the traveling wave ODE

c(uju™ = buju’ — (f(u) — f(uy)) (2.3)
and boundary conditions
zll)lrinoo u(z) = ug. (2.4)

In addition to the standing assumptions (Hy), (H;), we assume standard nondegeneracy
conditions from [ZH]* :

(Hs) ax := f'(uy) #0.
(H3) Solutions of (2.3) - (2.4) are (locally to @) unique up to translation.

Remark (Hz) holds if and only if (uy,0,0) are hyperbolic rest points of the first order
system (for u,u',u") associated with (2.3). Equivalently, it states that that the wave
speed is non-characteristic for the underlying conservation law u; + (f(u)), = 0.

Linearizing (2.1) about u(-) gives

vy = Lv:i= —(CUpss)z + (0V2)2 — (aV)a,
in which ¢ = c(u(z)), b=0bu(z)), a=f"(u(z)) — bW+ c'(V)Uusa-

Letting v(z,t) = e*w(z), we obtain the eigenvalue problem Lw = Aw :
— (cw")" + (bw')" — (aw)' = Aw. (2.5)

Here, and below, ' denotes differentiation with respect to x.

To demonstrate linear stability of the travelling wave uw, we want to show that if
ReX > 0, A # 0, then equation (2.5), with suitable boundary conditions at o0, has only
the trivial solution w = 0. Our approach to this question is through the Evans function
D(X) (defined below) of [AGJS, GZ]. This is an analytic function whose zeroes in the
right half plane (minus the exceptional point A = 0, which lies on the boundary of the

4(H3) is the specialization to the scalar case of the more general (H3) in [ZH].



essential spectrum) correspond precisely to eigenvalues of L . Moreover, as shown in
[ZH, HZ.2], stability under quite general circumstances is equivalent to the condition:

(D) D(:) has precisely one zero on {Re()) > 0}, consisting of a simple root at A = 0.

The Evans function itself is rather difficult to evaluate; a more readily computable

quantity is the stability index [J, PW, GZ, 7.2, 7.3]

I':= sgn D'(0) lim sgn D(A), (2.6)
A—>o0

where the limit is along the real axis. This quantity, taking values I' = 41, gives the
parity of the number of zeroes of D(:) in the unstable half-plane ReA > 0. This follows
from the observations that (i) I records the number of crossings of D(\) through zero as A
moves along the positive real axis, and (ii) non-real zeroes of D appear in conjugate pairs,
since L is real. In particular, I' = —1 implies instability of the traveling wave, whereas
[' = 1 is consistent with stability. It is this computable index, and its interpretation
in terms of the phase portrait of the traveling wave ODE, that provides much of the
theoretical explanation of the numerically observed stability phenomena.

To construct the Evans function, we explore solutions of (2.5) as follows. Since the
equation is fourth order, for each A, there will be a four dimensional set of solutions.
For A € {Re(\) > 0}/{0}, we can choose a basis for the subspace S of solutions that
approach zero as £ — oo and a basis for the subspace U~ of solutions that approach
zero as * — —oo. Then A is an eigenvalue if ST and U/~ have non-trivial intersection.
That is, we need a condition for the intersection of two linear two-dimensional subspaces
of functions. This condition is that the Evans function D()), defined to be the Wronskian
of the two pairs of basis functions of ST and U ~, should vanish. In the present situation,
the sign of the Wronskian is shown to be independent of z. The construction of the
Evans function extends analytically to A = 0.

In the construction of D(A), we do not need to include information about whether the
underlying traveling wave is compressive or undercompressive. After the Evans function
is defined and related to stability of traveling waves, we then focus on the compressive and
undercompressive cases in turn. In sections 2.5 and 2.6, we show that these cases differ
most significantly at A = 0, due to the fact that small disturbances propagate through
an undercompressive wave, rather than being absorbed, as they are for a compressive
wave. This distinction reveals itself in the structure of the subspaces ST and U™, but it
can already be seen in the behavior at £ = +00, which we now discuss.

2.1 Asymptotic eigenvalue equations.

As & — +o0, behavior of (2.5) is governed by the asymptotic constant coefficient equa-
tions

czw" =biw" —arw’ — \w. (2.7)
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Figure 3: Roots of equation (2.8)

Here and below, we use subscripts 4 to indicate that quantities depending on u are
evaluated at v = u(+00), respectively. E.g., c; = ¢(u(o0)). In particular, ay = f'(uy),
so that the sign of ay governs whether characteristics for the underlying conservation
law point towards the stationary front, or away from the front. This distinction shows
the effect of the conservation law on the direction of propagation of small disturbances.

The normal modes w = ¢/5 ” of (2.7) are determined by the characteristic equation

cap* —bip® 4+ azpu+A=0. (2.8)

First note that for A = 0, one of the roots is i = 0. This corresponds to the constant
solution of equation (2.7) when A = 0. For A # 0, we find that all solutions of (2.8) have
nonzero real part.

Recall that we need to distinguish solutions w(z) that decay at © = +oo, for which
Re(p) < 0 (termed stablein Lemma 2.1 below) and solutions w(z) that decay at z = —oo,
for which Re(y) > 0 (termed unstable in Lemma 2.1).

Lemma 2.1 For A € {Re(\) > 0}/{0}, (2.7) has two stable (i.e. negative real part)
and two unstable roots, p1, pz < 0 < uz, pg (ordering by real parts). At X = 0, there
are two cases:

(ai>0): p1 < po =0 < g, piy.

(ax <0):  pa,pe < 0= p3 < py.

Proof. (A # 0): First, observe that (2.8) has no imaginary roots p for A € {Re()) >
0} \ {0}. For, setting x = k7 in (2.8), we have the dispersion relation

A= —aiik - bik'z - Cik4, (29)

giving Re(A) < 0 unless k = 0. Thus, the number of stable/unstable roots is constant.
Taking A — +oo, on the real axis, we have p ~ (—A)Y/* = |A|'/4(—1)/4 giving two
stable and two unstable roots (Fig. 3(a)).
(A =0): At A =0, we can factor (2.8) as

copd —bip+ap =0, w=0. (2.10)

10



Clearly, the first equation has no imaginary roots for a; # 0, so, we can again count

1/3
roots by homotopy, taking b. — 0 to find u = (—%) This gives two stable roots and

one unstable root for ar < 0, together with u = 0, as claimed (Fig. 3(b)). The case
ay > 0 is symmetric. B

Now write (2.7) as a first order system

0 1 0 0
0 0 1 0
WI = Ai (A)W, Ai = 0 0 0 1 (211)
—Afe —afc bjc 0 )

in the phase variable W := (w,w’,w"”,w"")!. Throughout this paper we will identify

solutions of such fourth order scalar ODEs with solutions of their corresponding first
order system.

For A # 0, each root p, is associated with an eigenfunction w(z) = e#**, a solution of
(2.7). Then W := (w,w’,w",w™)" is a solution of (2.11). Since the equation is linear,
these exponential solutions can be combined linearly to form subspaces of solutions. In
keeping with the strategy of distinguishing exponentially decaying from exponentially
growing solutions, we separate the corresponding subspaces of solutions §+,Z7 ~, where
S" is the two-dimensional invariant subspace of solutions that decay as  — oo, and
U is the two-dimensional invariant subspace of solutions that decay as z — —oo. The
content of the following Corollary is that not only are these subspaces two dimensional
for A # 0, Re(A) > 0, but they also extend analytically to A = 0 as two dimensional
subspaces, even though for A = 0 each subspace may have a non-decaying eigenfunction
(depending on the sign of ay) as described in Lemma 2.1.

In the case of a compressive wave, a_ > 0 and a; < 0. Thus for A = 0 both St
and U are composed of decaying eigenfunctions at their respective infinities in z. On
the other hand, for an undercompressive wave, a_ and a, have the same sign. If they
are both negative then for A = 0, / has one nondecaying eigenfunction at =z — —oo
while S* has two decaying modes at oo. This behavior carries over to the non-constant
coefficient case describing the full eigenvalue problem (2.5).

Corollary 2.2 The stable/unstable subspaces g+/ﬁf associated with Ay (-) are each
two-dimensional on {Re(A) > 0}/{0}, and extend analytically in A to {ReX > 0}.

More precisely, there exist bases {V,T,V,"},{V,", V" } for the subspaces 3+,H_ :

S = span{V;", V,"}, (2.12)

U =span{V; ,V,}. (2.13)

The bases can be chosen to depend analytically on A and have the symmetry Vji(X) =

VE(N).

11



Proof. The dimension follows from Lemma 2.1. Likewise, since groups py, po and usg,
pg Temain spectrally separated on {ReX > 0}, the generalized eigenprojections onto
their associated subspaces are each analytic, by standard matrix perturbation theory
[K]. The eigenprojections are given by the resolvent formula P := [.(Ay —ul) 'dp, T a
contour enclosing pf, pui (resp. pi, uf). If T is chosen to be symmetric with respect to
complex conjugation, then P is as well, by the corresponding property of A,. Choosing
an analytic basis of eigenvectors by the construction of [K, pp. 99-102], we retain the
above symmetry. m

2.2 Stable and unstable manifolds

In the previous subsection, we froze the coefficients in the ODE (2.5), by setting u = u
and v = u_. This allows us to capture the behavior of solutions of the nonconstant
coefficient equation (2.5) as ¢ — +oo.

Given a solution ¢(z) of (2.5), we associate with it the vector of derivatives ®(z) =
(p(z), ¢ (z),d"(x),d" (x))". Given such a vector @, the angle it makes with a subspace
T of the four dimensional phase space is the minimum of the angle between ® and all
vectors in 7.

On {ReX > 0}, define S to be the subspace of solutions ¢ of (2.5) whose corre-
sponding vectors ® approach, in angle, the subspace ST as z — +o00. Analogously,
U~ is defined to be the subspace of solutions ¢ of (2.5) whose corresponding vectors ®
approach, in angle, the subspace I/~ as z — —oco. The existence of these subspaces is
established in [GZ] or [K.1, K.2, K.3].

The existence of these subspaces, along with analytic dependence on A, follows by the
gap lemma of [GZ,KS], or alternatively by earlier results of [J,K.1-3]; the full generality of
the gap lemma is not needed here, since we have spectral separation of the subspaces §+,
U and the complementary A, -invariant subspaces, a helpful feature of the scalar case.
The necessary hypotheses follow by analytic dependence of §+, U, the aforementioned
spectral gap, and exponential convergence of the coefficients a, b, and ¢ as z — +oo.

Regarding the latter property, recall from Remark 1 that u. are hyperbolic rest points
of (2.5) by virtue of (Hs), hence

|(d/dz)" (@ — us)| < Ce™™*, <0, £=0,1,2 (2.14)
for some a > 0, and thus
la — ax|,|b—bi|,|c —cx| < Ce™@ z<0. (2.15)

Using a slight extension of these results (see [ZH] Lemma3.1, p. 779, or [GZ] Corollary
2.4, p. 807), we can conclude in addition that there exist basis functions go;.t()\, z) such
that

S+ = Span{@iﬂ @;}7 (216)

12



U = spanfys, 03 }, (2.17)

which additionally have symmetry goj.i(X) = (pji(/\) so that goji are real-valued for A real.
This follows from the properties noted above, plus the existence of corresponding basis
vectors Vji asserted in Corollary 2.2. Moreover, the basis functions (pji()\, x) are analytic
in A at A = 0 and continuous elsewhere; the exterior products ¢ A ¢3 and @3 A p; are

analytic on all of {ReX > 0}; and () = ¢(A) (see [GZ]).

Because their associated eigenvalues may coalesce, ¢, ¢5 may not be individually
analytically continuable on { Re\ > 0}; however, they are jointly continuable in the sense
that their span, or alternatively their exterior product, can be analytically defined.

2.3 The Evans function.

We now define the Evans function, following [AGJS, GZ] as the Wronskian of the basis
functions @7, 3, 3, ¢, that characterize solutions decaying at +o0, at —oo, or both.

(@T vy 3 2

D()) := det . | . (2.18)

\ SOT n - SDZ n )

Properties:
(P1) D() is analytic on {ReA > 0}.
(P2) D(-) is real for real A.
(P3) On {ReX > 0}/{0}, D(X) = 0 if and only if A is an eigenvalue of L.

Only (P3) requires discussion. This follows from the characterization of eigenfunc-
tions of L as nontrivial solutions of (L — A)w = 0 lying in ST N, i.e. decaying at both
+oo. Evidently, vanishing of the Wronskian D(-) is equivalent to nontrivial intersection
of ST and U, by (2.16) - (2.17).

The meaning of the Evans function at A = 0 is less immediate, but equally important.
Note that A = 0 is an eigenvalue, with at least the eigenfunction %,, corresponding to
translations of u. Moreover, since u, decays at 400, it lies in both &/~ and S, implying
D(0) = 0. Moreover, this zero of the Evans function does not interfere with either linear
or nonlinear stability, as shown in [HZ.2, ZH], a result we alluded to earlier in formulating
condition (D), and which we restate here for clarity.

Proposition 2.3 Linearized stability of u(-) as a solution of (2.1) is equivalent to the
Evans function condition (D). Moreover, linearized stability implies nonlinear stability.

13



(Remark: [HZ.2] concerns also more general, dispersive—diffusive equations such as
the convex KdV-Burgers equation, or the nonconvex modified KdV-Burgers equation
studied by [D, JMS, W].)

Having defined the Evans function, we now begin to investigate whether or not it has
a positive zero. To this end, we use the stability index I' (see (2.6)) which only requires
information about D()) for sufficiently large A and the leading order behavior for real
A near A = 0. The small A behavior depends crucially on whether the traveling wave is
compressive or undercompressive. The stability index will be shown to be a coordinate-
independent orientation of the intersection of the stable/unstable manifolds of w /u_ in
(2.3). The connection to stability is given through

Proposition 2.4 The parity of the number of zeroes of D(-) in {Re(\) > 0} is odd
(even) according to I' > (<)0. In particular, I' < 0 implies instability, whereas ' > 0 is
necessary for stability.

Proof. Using D(X) = D()), we have that complex roots of D(-) appear in conjugate
pairs. On the other hand, the number of real roots with A > 0 clearly has the parity
claimed. The connection to stability follows from Proposition 2.3. m

2.4 The Evans function as A\ — oo.

Following [GZ], we now evaluate the Evans function in the large |A| regime. Let m: C* —
C* denote orthogonal projection onto the span of the first two standard basis elements,

e; = (1,0,0,0)" and e; = (0,1,0,0)". We have the following analog of Lemma 3.5 in
[GZ]:

Lemma 2.5 The projection 7 is full rank on the AL -invariant subspaces §+, U . Equiv-
alently, if V = (v1, v, v3,v4)" and V = (01, 0o, U3, 04)" € S’ (resp. U ) are independent,
then det ( v ) # 0.

V2

V2

Proof. It is sufficient to treat the case that V, V are eigenvectors of Ay. If they are
independent genuine eigenvectors, then, by the companion matrix structure of (2.11), we

have V = (1, i, 42, 1i%), V = (1, i, i%, i), and det ( o gi ) =p—p#o0.

V2 U2
The other possibility is that g = i and V = (1, u, p?, 1®)t, V = (0,1, 2p, 3u>)* form
an eigenvector / generalized eigenvector pair. In this case, det Zl ;1 =1+#0, also.
2 V2

|
This lemma allows us to express the sign of D(A) for large A in terms of the projections

of the basis vectors of §+, U at A =0. To this end, let the basis vectors VjjE (j=1,...,4)
have components ngk: (k=1,...,4).
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Proposition 2.6 For A > 0 real, sufficiently large,

vE ovr ) < Var Vi )
sen D(A\) = sgn det 11721 ) det 31 4l —0. 2.19
gn D) = s (Vﬁvz; Vi Vi )P (2.19)

Proof. The proof follows arguments of Proposition 2.8 of [GZ], or the equivalent Propo-
sition 7.3 of [ZH] for lower order systems of equations. The idea is to use an asymptotic
argument for large A to show that the sign of the determinant in the Evans function can
be expressed in terms of the sign of the determinants in (2.19) provided A is sufficiently
large. Then Lemma 2.5, which implies that the sign of the determinants in (2.19) are
independent of A (since they are continuous and can never vanish) gives the desired
result.

First we choose A sufficiently large so that the asymptotic arguments below are valid.
We can rescale (2.5) by # = A4z, @(2) = w(z), a(2) = a(z), b(2) = b(z), (&) = c(z),
to obtain

D" = = w+ O(A(lw| + |w'| + [w"| + [w"])) (2.20)

where |¢'| = O(A1/*). Applying Proposition 2.8 of [GZ], or the equivalent Proposition
7.3 of [ZH], we find that in phase variables, the subspaces S*(z) /U (x), defined by the
evaluation of the stable/unstable subspace of (2.20) at an arbitrary z(, lies within angle
O(X~Y/4) of the stable/unstable subspaces of the limiting equations

" = —¢ (2.21)

with coefficient ¢ held frozen at value é(zy). The subspaces of the limiting equations
are spanned by the stable/unstable normal modes of (2.21), readily calculated to be
(1’/‘/l7 /'/127/‘,13))57 Where

= (o) = (—&(0) )" (2.22)

are fourth roots of (—6)_1.

Converting back to the original scaling, the subspaces ST (z()/U ™ (zy) defined by the
evaluation of the stable/unstable subspace of (2.5) at z, lie within angle O(A~%/*) of the

SUbspaces spanned by {(17 Hi1, /1'%7 Ni’)t7 (17 K2yt N%)t} and {(1? K3, P‘%a #’g)a (1’ Ha, #’Za N’i)}
respectively, where

pi(o) = (=X/c(xo))'*. (2.23)

Recalling (see Section 2.2) that ST (zy)/U (z() are real-valued for X real, and that
for large A w1, po and pg, py form complex conjugate pairs, we find therefore that
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+I +I ! _1
(10_}_// 90_%_// SDE// sOi// = (1 + 0(|)\71/4|)) X
1 2 ¥3
Fm ‘m “m ~m
1 2 P3 4

1 1 1 /2 i/2 0 0
Ki o p2 M3 pa| | 1/2 —i/2 0 0 My 0

: 0 0 1/2 /2 (o M_) (o) (2:24)
@) \o 0 1/2 —if2

w

H1

where M, (z) are specific nonsingular real-valued coefficient matrices. It follows, there-
fore, that

1 1 1 1
D) = —(1+O(A Y4y det | 1T F2 det<]\/é+ Iy )
H1 : /7 (2.25)
3 3
Ky - Ky

|z==0

Evaluating the Vandermonde determinant, and noting that all quantities involved
are real and nonvanishing, hence have sign independent of zy, we find that

sgn D(A) = sgn dets < ;1 Mlz ) det M |;—q, det < ;3 L ) det M_|,—s,
1 1 1 1
= sgn deti det M |4— 100 det det M_|,-—
H1 M2 M3 H4 (2.26)

+ oyt ~ -
= sgn det ( KE_ Vzi )det < V?’i V4i (A)

so long as A is real and sufficiently large.

But, the right hand side of (2.26) is independent of A by Lemma 2.5.m

Remark: The matrices M4 in the proof are used only as an intermediate book-
keeping device, and play no role in the final computation.

2.5 Evaluation at A\ =0 in the Lax case.

In this subsection, we restrict to the Lax case, for which
a_>0>ay. (2.27)

Consulting Lemma 2.1 and Section 2.2, we find that S*(0), &/ (0) consist of all
solutions of (2.5) that exponentially decay as z — 400, —oo respectively. We can
therefore integrate (2.5) with A = 0 from either 400 or —oco to obtain

16



cp” = by — ap. (2.28)

Note that (2.28) is exactly the variational equation for the traveling wave ODE (2.3).
Indeed, one solution of (2.28) is ¢ = u,, corresponding to translation along the profile.
By appropriate change of basis, we can arrange without loss of generality that

01 (0,2) = ¢, (0,2) =T (z). (2:29)

We choose 3 and 3 to be any independent solutions of (2.28) decaying at +oo.
Note that the traveling wave ODE (2.3) can be written as a three dimensional au-
tonomous system

u ; u2: (2.30)
oo M, S )

o) w7

which has equilibria at B = (u,0,0) and M = (u_,0,0). A travelling wave solution
of (2.3) connecting u_ to uy corresponds to a heteroclinic orbit of (2.30) connecting
M to B. For the Lax case, M has a two dimensional unstable manifold and B has a
two dimensional stable manifold. We now see that the subspace ST (/™) at A = 0 is
composed of functions ¢ with corresponding vectors (¢, ¢, ¢")" that span the tangent
space of W*#(B) (W"(M)) along %(-). An illustration of this structure for the special
case of (1.6) is presented at the end of this section.

The next proposition, following the general approach introduced by Jones [J] relates
the sign of D'(0) to the orientation with which these stable/unstable manifolds intersect
in the phase space R3 of (2.3).

Proposition 2.7 D(0) = 0, while

Ua P2 P3
sgn D'(0) = sgn c(0)~tdet | @, ©f 3 | (uy —u_). (2.31)
EIZI (P;_II S0:)?1/
Proof.
R
D(0) = det : : : : = 0. (2.32)

@, (p3)" (p3)" W
Similarly, a straightforward calculation (as in [GZ]) yields

T @3 3 (pg, —¥1)
pOy=det| : : : (2.33)

1n +/II "

T, @3 @3 (5, —e1)"
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Differentiation of (2.5) with respect to A shows that the functions z = (pf;, (g, satisfy
the same variational equation

(cz") = (b2") — (az) — U, (2.34)

decaying at +o0o, —oo respectively. Integrating from +o0o, —oo respectively, and sub-
tracting, we find that 2 := ¢, — gof; satisfies

cZ" =bz' —az + (u- —uy), (2.35)

an inhomogeneous version of (2.28). Using (2.28), (2.35) to eliminate the fourth row in
(2.33), we obtain

+ — ~

Ug P2 ¥3 z

7 +/ _! ~/
DI 0 = O 71d t u/z/ 802// 803// z 236
O)=c(0) Taet | 5 7L D (2.30)

0 © 0 (u- —uy)

giving the result. m

Remark: The right hand side of (2.36) is of form A, where the first factor,
measures orientation of the intersection of the stable and unstable manifolds of the
underlying traveling wave ODE at u,, u_ respectively, and the second factor, A = [u],
is the Kreiss-Sakamoto—Lopatinski determinant arising in the study of inviscid stability.
This is a special case of a very general relation pointed out in [ZS] between viscous and

inviscid stability.

Combining Proposition 2.6, Proposition 2.7, we have

Corollary 2.8 The stability index T' := sgn D'(0)D(+00) satisfies

U, vs  p3
I'=sgn || @, ¢35 ©35 |l=0 X
T, Y3 ¥3
det < U 902+, ) [ det( Ps, Ua ) o= oo (U — uy)
w, ¢y )T o3 T, )T

We now present an example from [BMS99] and discuss how the machinery developed
here explains numerical observations of one dimensional stability of compressive waves.
We consider (1.6) with § = 0 and v = 1. For each u, there is a range of u_ for which
multiple compressive traveling waves appear. For a special value of u_ an infinite number
of compressive waves occur. For the case u; = 0.1, the special value is approximately
u_ = 0.332051. A detailed discussion of the phase portrait for this example is given in
[BMS99]. Shown in Figure 4 is a Poincaré section (at fixed u) from the phase portrait
of (2.30). The stable manifold W*(B) is shown as a dashed line while the unstable
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—0.065

—0.145 -
—0.28 —0.18

Figure 4: Section of the invariant manifolds W*(M) (solid line), W#(B) (dashed line) and
W*(T) (plus) with the Poincaré plane P = {(u, v, «"); v = (2u_+u,)/3}. Intersections
of the solid and dashed lines mark points where trajectories connecting M to B hit P.
The symbols around these intersections indicate whether the corresponding profile is a
stable (circles) or unstable (boxes) solution of the PDE, for the first two traveling waves
7. Arrows indicate the direction of ((¢3 ), (3 )") and ((¢3), (»3)") (the projection of the
derivative vectors on the Poincaré plane).

manifold W*(M) is shown as a solid line. Note that this unstable manifold appears as a
spiral whose center corresponds to the undercompressive connection. Each intersection
of these two curves denotes a point along a heteroclinic orbit of (2.30). The intersection
denoted by a circle corresponds to a one-dimensionally stable compressive wave while the
box corresponds to a one dimensionally unstable compressive wave. The arrows on the
figure denote the orientation of a choice of basis vectors (¢3 ), (3 )") and ((¢3), (03 )").
Note that the orientation of these vectors switches at each successive crossing of the
spiral. The vector (i@,,@,, @) is into the Poincaré plane. Following Corollary 2.8, the
corresponding stability indices I'; alternate in sign. This is consistent with numerical
observations that the successive waves alternate stability. (Recall that uy are fixed. The

remaining terms det [ _, ! and det AR fix a common orientation on the
uz 502 903 Uz
stable /unstable manifolds at u_/u.).

Remark. As often happens, we obtain a rigorous instability result by this tech-
nique, but it is only suggestive of stability. To obtain a complete stability result would
require establishing nonexistence of pure imaginary eigenvalues (other than A = 0), a
separate (and quite interesting) unresolved issue.
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2.6 Evaluation at A =0 in the undercompressive case.

The undercompressive case, sgn a_ = sgn ay, can be treated similarly. For example,
Proposition 2.6 goes through unchanged. However, the behavior at A = 0 is significantly
different, as might be expected from the fact that long-wave behavior is dominated by
the convection rates a4 in the far field. In the present, one-dimensional context, this
leads to a slightly modified stability index. In the context of multi-dimensional stability,
as we shall see later, the distinction is still more critical.

Without loss of generality (and to be consistent with the thin film context [BMS99]),
assume

a_ = f'(u),ay = f'(uy) <O0. (2.37)

Note that this implies that there exists an intermediate equilibrium ° w,, between u_

and u,. The corresponding system of equations (2.30) describing the phase portrait
for the traveling wave has (at least) three equilibria B = (u4,0,0), M = (u,,,0,0),
T = (u_,0,0). The undercompressive wave corresponds to a connection from 7' (which
has a one dimensional unstable manifold) to B (with a two dimensional stable manifold).

Appealing again to Section 2.2, we find that, as in the Lax case, ST consists of all
solutions of (2.5) decaying exponentially at z = +o0o. However, recalling the discussion
before Corollary 2.2, when A = 0, I/ ~ now consists of solutions that are only bounded as
z — —oo. Without loss of generality, when A = 0, choose again ¢] (z) = ¢, (z) = u,(z),
and take o3, @5 to be independent solutions of (2.5) in S*, U~ respectively, where we
can choose the normalization ¢; (—o0) = 1.

Proposition 2.9 D(0) =0, while

sgn D'(0) = —sgn (a_/c(0))det | @, ©F (27 —2zT) | |o=o
A
. @ 2.38
= sgna_ [~ (1/c)(u— u_) det ( ta :fi, ) dz, (2.38)
2

where z* satisfies the variational equation

2" =b2' —az — (W —u_), (2.39)
with

2T (+00) = 0, 27 (—o0) = (uy —u_)/a_. (2.40)

®Note that we are using slightly different notation from [BMS99] in which u_ and uy always denote
nearest equilibria.
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Proof. As in the proof of Proposition 2.7,
D(0) = det : : : : =0, (2.41)

and
T, v w3 (pan— 1))
D'(0) =det | : : : : . (2.42)

1n +/II _nm

T, @3 @3 (o5, — 1)

Likewise, the decaying solutions %, and ¢j satisfy equation (2.28). However, @3
is asymptotically constant, ¢3(—o00) = 1, hence satisfies the inhomogeneous equation

co”" =bp' —ap+a_. (2.43)

Using the fact that Z := ¢; — ¢ as before satisfies (2.35), we can use (2.28), (2.35),
(2.43) to reduce the fourth row of (2.42), obtaining

U 93 93 Z
—_ +I 1! ~
D'(0) = ¢~ det ;,, sf;*" (‘;’:,, ; : (2.44)

0 0 a u_—uy

Using the third column to eliminate (u4 — u_), we obtain

Us 93 pg 2 =T
=/ + = - _ Yy
D'(0) = ¢ 'det | Yz ¥2, ¥3, (=" . ', (2.45)
U pr 3 (27 —27)
0 0 a- 0
where 27 — 2z =2 — (“‘a__“+) p3 are defined by
— — U- —u —
2t = goi';, 27 =y, — (T—l—) 5. (2.46)

Evaluation of (2.45) at « = 0 gives the first equality in (2.38). Integration of (2.34),
together with (2.43), verify that z* both satisfy (2.39), with the claimed boundary

conditions at doo.

Now define
U, @y 2F
Ut =det [ @, o 2 |. (2.47)
a, ¢y 2T



The reduction to a Melnikov integral in the second equality in (2.38) involves evalua-
tion of ¥~ — W, Briefly, this follows (see, e.g., [GZ], proof of Lemma 3.4, or [GH, Sch])
from the (inhomogeneous) Abel’s formula,

T, pF 0
W =TrBy +det | @ 0
@, ¢35 (@—u)
(2.48)
U,y 0
—det| @ 0 ,

@, ¢ (a-u)

T

and Duhamel’s principle/variation of constants, to evaluate ¥* at = = 0. Here, B =

0 1 0
0 0 1 . . .
B(A, z) denotes the coefficient matrix for (2.28) written as a first order
—afc bfc 0
system. W

Combining Corollary 2.8 and Proposition 2.9, and recalling that, as * — —oo,
(gbg,gbgl) - (170) and SgN Ugy ~ SN [hy Uy = SN Uy, WE have

Corollary 2.10 The stability index T’ := sgn D'(0)D(+o0) is given by

I' = sgn a_/ (1/c)(w — u_) det ( E,z SDJZF, ) dz @,(—o0) det ( Yo P2 ) o=t00

+I
Uy P2 U, o (2‘49)

Note that the functions 2% in (2.38) are uniquely specified by (2.39)—(2.40), modulo
span{i,, 3 }. 2z~ and z* have an important interpretation as the variations, in the
traveling wave ODE,

() = by — (F(u) — Flu-) - s(u —u_)), (2.50)
of the unstable/stable manifolds of u; and u_(s) as the shock speed s is varied. Likewise,

T ot (s — ot
| ¢ 3 uﬂ:/<w@w—mma(ﬂ ;)
C " " — 0 T Z
A ¥z /(2.51)

can be recognized as %ﬂszo, where d(s) is the Melnikov separation function, measur-
ing the distance (in 3-dimensional phase space) between the one dimensional unstable
manifold 7" and the two dimensional stable manifold of B along a fixed transverse sec-
tion. Alternatively, it represents the orientation with which ST and U/~ intersect in

4-dimensional phase space of eqn. (2.50) augmented with

' =0. (2.52)
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The stability index I' is a coordinate- and normalization-independent measure of the
orientation.

Calculation of T.
We now turn to the calculation of the stability index for the undercompressive case,
which hinges on the calculation of the sign of the Melnikov integral

9d/ds = /Oo(1/c)(a ~ u)det ( o v, ) da.

[s 9] T 2

This can be evaluated conveniently in terms of the left zero eigenfunction 7. We post-
pone a discussion of the associated spectral theory to the next section. It transpires that
the Melnikov integral arising in calculation of the stability index for undercompressive
shocks can be expressed alternatively as

(T — Uy, kT0), = (T, k%) = K, (2.53)

where (-, -) denotes L? inner product, u, is the state arising in the original formula (in the
present setting, u, = u_; see [GZ] for more general situations), and & is an appropriately
chosen constant. The key simplification of the Melnikov integral comes from the formula

- +
0 _ Uz Po
km, = (1/c)det ( 7 ot ) , (2.54)

which we derive below. Comparing behaviors at +o0o, we find that the sign of the
Melnikov integral is

_ +
sgn (1/c)det (;f ¢_|2_/) 0] 2=t 005
T 2

and thus, referring back to (2.50), we obtain the simple expression:

Proposition 2.11 For an undercompressive wave, the stability index T' can be computed
as

I'= sgn a_mo(+00)ad,(—o0) (2.55)
where ©° denotes the left zero eigenfunction.

For the specific traveling wave computed numerically and shown in Figure 5 and
for the corresponding 7° shown in Figure 7, we observe that I' = 41, consistent with
stability of the undercompressive wave. To finish the proof of Proposition 2.11 we show
the equality (2.54) then use integration by parts and the fact that 7%(+o00) = 0. As
we discuss in more detail in the next section, 7" is uniquely specified up to a constant
factor, is bounded, and satisfies the adjoint eigenvalue equation

—(e2")" + (b2") + a2z’ = 0.
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Figure 5: The undercompressive wave corresponding to 3 =0, v =1, and v, = 0.1.

It follows that the derivative 70 is uniquely specified up to constant factor by the prop-
erties that it decays at +o00 and satisfies

"

—cy” + (by)' + ay =0, (2.56)

obtained by setting y = 2’.
Now, observe that, by Abel’s formula, the vector (ey, e2, e3) defined by

@, 3
€ = det < ﬂ;’ SOg_// 5
a7 +
_ Uz P2
62__det(ﬂ; 90;_//)7

ot
e3 = det 37 90_12_, ,
uz 802

must satisfy e;w + eow’ + e3w” = constant for any solution w of the linearized traveling
wave equation

—cw" +bw' — aw =0,

of which both @, and ¢3 are solutions.
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It follows that (es, es, e3) must satisfy the adjoint ODE to the linearized traveling
wave equation written as first order system W' = B'W, where B is as in (2.6),

0 0 afc
B=| -1 0 =b/c |,
0 -1 0

from which we readily find that ez satisfies

ey — (bes/c)' — (a/c)es = 0.

Thus,
-+
Uy  Po _
(l/c)det(a; 903_1 ) = (1/c)e3

satisfies (2.56) as claimed.

Remarks.

The formula (2.55) in Proposition 2.11 is new. The improved formula (2.56) in
Proposition 2.11 is not restricted to the special setting of thin film models. In fact, the
ideas used in its derivation, in particular (2.53) and (2.54), easily generalize to systems
of conservation laws of arbitrary order to yield an analogous result. These formulae are
the consequence of a general but somewhat nonstandard duality principle. °

This observation therefore represents a useful refinement in the general theory. For
comparison, the formula obtained in [GZ] for second order diffusive systems is analogous

In particular, note that the fact that e3/c satisfies the equation for 2z’ can be seen from the more
general relation
(2,2, 2" S (w,w',w")* = constant

for solutions w of the linearized traveling wave ODE (in particular, decaying solutions of the adjoint
ODE at A = 0) and solutions z of the adjoint eigenvalue ODE at A = 0, where

B —b+c" - ¢
S = 2 —c 0. (2.57)
c 0 0

For, by duality, this implies that (Z, 2", z’"")S =: (e1, €2, €e3), solves the adjoint of the traveling wave
ODE written as a first order system, and by inspection e3 = cz’.
This relation, in turn, is a special case of

(2,2/,2",2")S(w,w',w", w'")" = constant

for solutions w, z of the eigenvalue and (resp.) adjoint eigenvalue ODE at A = 0, where

a b+ - ¢
S=[-b-c" 2 c 0], (2.58)
—c —c 0 0

under assumption cw’’ = bw’ — aw. The duality relation (2.57) was pointed out in [LZ.2] in the second-
order diffusive (system) case; the underlying relation (2.58) was pointed out in [ZH], Lemma 4.4, and
the extension to arbitrary higher order operators discussed in [ZH], proof of Theorem 6.3.
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to Corollary 2.10; in the third order scalar case treated in [D] the formula obtained are
explicitly evaluable, and the issue does not arise.

As pointed out in [SSch| in the diffusive case, nonvanishing of the Melnikov integral
is related to well-posedness of Riemann solutions near the undercompressive shock (u_,
uy, 8). There is, however, no analog of (2.31) in the diffusive case, for which scalar Lax
shocks are always stable [S.1, H.1, H.2, H.3, JGK].

In both Lax and undercompressive cases, the index I' can be evaluated numerically.
However, it does not give a conclusive result of stability, yielding only parity of the
number of unstable eigenvalues of L.

A complete numerical evaluation of stability can be performed efficiently using an
algorithm of Brin [Br], in which D(-) itself is evaluated numerically, and the winding
number computed around {ReX > 0}. Moreover, the top eigenvalue can be computed
numerically using the power method discussed in the following section. Furthermore, as
was done in [BMS99], nonlinear stability can be verified numerically by perturbing the
stationary wave and noting convergence or divergence of solutions of the PDE.

3 Multi-dimensional stability and the long-wave
paradox.

This section addresses multi-dimensional stability and the long-wave paradox for stabil-
ity of undercompressive shocks. Here we are concerned with how the spectrum of the
linearized operator depends on the transverse wave number. For this problem we present
theoretical justification for formal and numerical treatments of the spectral problem.

A first order perturbation analysis of the spectrum can be readily carried out, both for
systems and for scalar equations, by Evans function calculations very similar to those of
the previous section [ZS]. What we require here, however, is a second order expansion,
or ‘diffusive correction’ in the language of [ZS], since scalar shock fronts are always
neutrally stable to first order (see [ZS], or calculations just below). In the present, scalar
setting, this is much more convenient to carry out via standard, Fredholm solvability
calculations, justified by passing to an appropriate weighted norm, than via the Evans
function framework, and we shall therefore take this different point of view in what
follows.

3.1 Preliminaries
Consider now the multi-dimensional version
up + f(u), = V- (b(w)Vu) — V- (c(u)VAu) (3.1)

of equation (2.1). Linearizing about u(-), and taking the Fourier transform in transverse
directions, we obtain

Dy = Lid i= —(Clpap)a + (b02)e — () — k2 (b0 — (cby)s — Clpa) — k*cd
(3.2)
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where
c=c(m), b=b®), a=f'(v)-"b@u, + (T, (3.3)
and k is the wave number, 0 = 9(z, k, t).

Remark. Equation (3.2) is for two space dimensions as in the application to thin
films. In the case of higher dimensions, rotational invariance yields the same transformed
equation in which k& becomes the modulus of the wavenumber.

Associated with (3.2), we have the family
(L — A)w =0 (3.4)

of eigenvalue equations, where L is exactly the linearized operator about u(z) for the
one-dimensional problem. In what follows, we will assume L; is an analytic function of
k%, rather than just k, since in equation (3.2), Lj is a quadratic polynomial of k2.

The question, assuming stability of the one-dimensional operator, is whether the
spectrum of L; remains stable as k is varied. Of particular interest (see e.g. [CE])
is the variation for small k£ of the top eigenvalue A(k), where A(0) = 0 corresponds to
translation of the wave. For it is this mode, to leading order, that governs the propagation
of disturbances along the front (see discussion [G, GM, HZ.2, K.1, K.2, K.3, KS, ZH, ZS]).
Stability of A(k) for small £ (i.e. ReX < 0) is called long-wave stability. This is the
problem of most interest since the fourth order diffusion necessarily causes the dominant
eigenvalue to decay as —k*c for large values of |k|.

3.2 Spectral Theory.

A rigorous discussion of long-wave stability, in the context of conservation laws, requires
additional spectral perturbation theory, beyond the usual Banach space theory of, e.g. [K,
Y]. For, the eigenvalue A(0) = 0 of main interest is embedded in the essential spectrum
of Ly, [He, S.1, ZH] hence this standard theory does not apply. A priori there is no
reason to expect an analytic development of A(k) at such a point; indeed, for systems of
conservation laws, it is a fundamental fact that A(-) is in general not analytic at & = 0.
We refer the reader to [ZS] for further discussion of this general situation.

However, in the present, scalar context, a much simpler treatment is possible by the
weighted norm method of Sattinger [S.2]. Introducing the norm

1 £lle = (19| 2, (3.5)
with
Qz) :=e Pl aWd 15950, (3.6)

has the effect of shifting the essential spectrum of Lj to the left, into the strictly stable
complex half-plane, as is readily checked by the methods of [He, S.2] (see also [Z.2] for
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further details). Thus, in this norm, A(0) = 0 becomes an isolated eigenvalue, and we
may conclude from standard spectral theory the existence of analytical developments

k) = NE> 4o (3.7)
and
pk) ="+ 'k +--- | (3.8)

of A and the associated right eigenfunction ¢ € L3.
Likewise, there exists an analytic L2 left eigenfunction with respect to the L2 inner
product, whence we can conclude existence of an analytic eigenfunction

(k) =m" + 7k + -, (3.9)
with respect to the standard inner product, where Q27 € L2, or equivalently
e Lj,. (3.10)

Moreover, A/ are the unique L, eigenvalue/function pair for L; in the vicinity of A = 0,
and A/m the unique L2 _, pair.

An interesting feature of these developments as compared to the usual (unweighted)
type is that, depending on the signs of ay, ¢(k) or m(k) may be nondecaying, in fact
exponentially growing at £0o. Nonetheless, as in the classical case, we have the following
result, in which (-, -) denotes the standard L?(R) inner product:

Proposition 3.1 Suppose that (consistent with one-dimensional stability) A = 0 is a
simple eigenvalue of Ly (i.e., when k = 0), and that all other eigenvalues have negative
real part. Let M k) as above denote the top eigenvalue of Ly. Then, for compactly
supported initial data vy, and x restricted to any bounded domain, the solution v(z,t) =
eF*ug(z) of vy = Lyv satisfies

v(z,t) = PP (k)ug (14 O(e ™)), 7> 0, (3.11)
where P(k) denotes the generalized spectral projection operator
P(k)g = (k) (r(k), g) (3.12)
associated with A(k).

This can be seen from the corresponding classical result in L2, together with the
observation that 2 is bounded above and below on compact domains. For a proof in the
general, systems setting, see [ZH], sections 5—6 and 8 (note: this result is independent of
the regularity of A(-).)

Proposition 3.1 states that the nonstandard eigenfunctions ¢, 7 still govern asymp-
totic behavior on bounded domains, analogous to “resonant poles” in scattering theory
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[LP]. A useful corollary of this fact is that the power method can be used to find the

top eigenvalue/eigenfunction of Ly, by solving v; = Lyv starting with any compactly sup-

ported initial data. This validates the numerical stability analysis of [BB97, BMFC98|.
Likewise, the classical formula

M = (n, 120 + (n', (L = N)) = (", L1¢") (3.13)

(L, =: L° + kL' + ---) based on solvability conditions/ Fredholm alternative can be
seen to apply, as a consequence of the equivalent formula in the {2 norm. That all L2
inner products are well-defined follows from consideration of the decay/growth of ¢, 7
as ¢ — too, which reveals that they and their derivatives lie in L3, L3 _,, respectively.
(By comparison, only a weak version of the Fredholm alternative survives for systems,
see [ZH]).
Remark. The introduction of the weighted norm || - ||q is equivalent to the change of
variables z = Quw, from which observation we may deduce that (since such a change
of variables introduces only a nonzero constant multiplier) that zeroes of the Evans
function correspond to eigenvalues with respect to {2 norm. Moreover, this yields the
useful characterization of their generalized eigenfunctions as the intersection between the
stable /unstable manifolds S* /U~ defined as in Section 2.

To investigate long-wave stability, we expand the operator L, in powers of k2, L; =
LY + k2LY + k*L2, with

d d d?
70 = Ly, I'= bt — (c—) +c—— I’ = —c. (3.14)
Using the fact that ©° = 4,, to first order we obtain
Ma, = L'u, + L.

We multiply this equation with the left eigenfunction of Ly, i. e., the solution of

Lit" =0, (3.15)

d? d d d d
Ly=——|c— — | b— | —a— 1
0 da? <cda:> + dzx ( dm) Yz (3.16)

is the formal adjoint, and then integrate from —oo to 400, to get

Al / ', = / n’LYu, + / 7Lt

Integration by parts of the last term yields

/ 00! :/ 'Ly’ =0, (3.17)

oo

where
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since the boundary terms vanish.

Hence,
o0 o0
1 — 1—
A / T :/ 7L Uy,
— 00 — 0

as in (3.13) if 7° is normalized by < 7°,u, >= 1.
Hence, using the explicit expression for L! in (3.14), we obtain, after integration by

parts
[e.@] [e.@] oo
1 0- _ 0. [ 07~ _ 0.~
A / T, = T cumLoo —/ 7 (blly — Cligey) —/ T Clyg.
— o0 —o0 — o0

Since the boundary terms vanish, the traveling wave ODE implies

Al /OO i, = — /OO (F(@) — flu)) — /OO ¢t (3.18)

[e @] — o0

To proceed further, we have to determine the left eigenfunction, by finding a solution
of (3.15) with the appropriate behavior at +oo.

The discussion of the boundary conditions for 7° depends on the growth/decay rate
of the traveling wave and the first order correction of the left eigenfunction, and leads
to different results for the compressive and the undercompressive case.

In the Lax or compressive case, (a_ > 0 > a,), we have that the weight Q of
(3.6) grows exponentially. Thus, functions in L} decay exponentially at +oc/— oo, while
functions in L?_, are allowed to it grow exponentially. Thus, the constant solution

Liw = —(cwy )yae + (bwy), + aw, =0 (3.19)

is the unique L3 , left eigenfunction, whereas @, is the exponentially decaying right
eigenfunction in L}. (Note: (7% w@,) = 1). This validates the formal calculation in
[THSJ89, BB97] via (3.13), which in this case is equivalent to simple integration, yielding

A= /Oo de. (3.20)

In the undercompressive case, (a_,a; < 0), on the other hand, Q blows up as
T — +oo but decays as © — —oo. Thus, L} functions may grow exponentially while
L?_, functions must decay exponentially at —co. The latter fact implies that 7° in this
case is not a constant function, hence the formal calculation of [THSJ89, BB97] no longer
corresponds to (3.13).

Moreover, numerical computations by the power method reveal that ¢! indeed grows
exponentially as x — —oo. Thus, the calculation of the Lax case, by integration against
a constant is not valid to test stability in the undercompressive case, the resulting
integral being unbounded, hence the conclusion of instability by this test is false. (Of
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course, this fallacy would likewise be detected at the level of solving for ('.) This gives
a simple explanation of the aforementioned long-wave paradox.

We further examine the growth rate of ! at —oo analytically: The slow growth
rate p_(k, A) perturbing from the one-dimensional root p_(0,0) = 0 of the characteristic
equation for Ly,

—capt 4 bip® — pay — cik* — k2 (by — 2cop?) = A (3.21)
(analogous to the one-dimensional version (2.7)), at k = 0, A = 0, gives

A+ bik? k*
N:I:(kaA):_( - iajj— = ) (3‘22)

Now, let us consider the case b = 0 corresponding to the stability computations of
the undercompressive wave in [BMFC98]. Here, u_ = —A/a_ + H.O.T.. Thus, in case
of stability, \! < 0, we have

Ak?

a_

(e M(R)) ~ i (k, AH?) ~

<0, (3.23)

and so ¢(k) generically exhibits exponential growth as © — —oo for any small k£ > 0,
the exception arising when S intersects U~ precisely along the unique decaying solution
corresponding to the remaining (positive) root. Indeed, ¢(k) (generically) decays at +o0o
in case of instability!

Remark. The growth of ¢ at —oo raises also an apparently subtle issue of competition
between exponential temporal decay e*(#)* and exponential spatial growth, and indeed
this issue is not resolved by considerations in the {2 norm (where spatial growth is ignored
at —oo). However, heuristically, note that at the order of A, the dominant linear behavior
in the far field at —oo is

—A\1k?

a_

2 _ 2
ek /\1te Alk :E/a_

= exp( (z —a_t))
which is precisely a translating wave with speed a_ and shape corresponding to the
eigenfunction in the far field. Thus the exponential growth of the eigenfunction and
exponential decay of the eigenvalue combine to produce a translation in the far field.
This is consistent with the fact that for the undercompressive wave, information passes
through the waves and goes off to —co with speed a_. Preliminary numerical compu-
tations [M99] verify that, in this regime, temporal decay indeed wins out over spatial
growth.

More detailed computations of [HoZ.3, Z.1], in the second order diffusive case carry
over in straightforward fashion to the case of higher-order diffusion (see [HZ.2| for a
one-dimensional version) to reveal that

(Dr) ReX(k) <0k?, 0 <0, for the top eigenvalue (k) of Ly,
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is a sufficient condition for linearized stability, independent of spatial growth of eigen-
function ¢, or in our notation,

Al <o. (3.24)

3.3 Alternative solvability condition.

As discussed above, in the undercompressive case, 7’ = constant is no longer a left

eigenfunction for @, (as in the Lax case). Indeed, this is the key difference between Lax
and undercompressive waves pointed out in [LZ.2]: the shock shift (represented at the
linearized level by the component of instantaneous translation %,) is not determined by
mass, (i.e. projection (1,-)), but by a different time-invariant of the solution (r%(-),),
where 7" is an nonconstant bounded solution of

L*r" =0, (3.25)

with boundary conditions

{ m(z) = 1 as r — 400 (3.26)

m(z) = 0 as r — —oo.
The boundary conditions can be understood heuristically from the observation that
mass near +oo is swept inward by convection a;, < 0, to interact with the shock, while
mass near —oo is swept away by a_ < 0, never affecting the shock (see [ZH], §10 for a
rigorous discussion). The condition at +co may be deduced rigorously by consideration
of growth/decay rates at +o0o of solutions of the adjoint eigenvalue equation, which
reveals that solutions in L7 , must in fact be bounded (note: growing solutions grow at
too great an exponential rate). The condition at +oo is clear, by exponential decay of
functions in L?l,l.

3.4 Numerical Results

In this subsection, we describe numerical results for the thin film equation
u + (v —v’) =-V- (4’VAu), (3.27)

which is equation (1.5) with b = 0, ¢ = u3, f = u* — u3. We focus exclusively on
multidimensional stability of one-dimensional traveling waves. A preliminary stability
analysis in [BMFC98] of compressive waves revealed that they were unstable against
2-dimensional perturbations for a range of wavenumbers & > 0. On the other hand,
the undercompressive wave was stable for all wavenumbers. These results agree with
experimental observations of the liquid front.

In this paper, we calculate the critical growth rate A(k) for a variety of compres-
sive and undercompressive traveling waves, and compare the results with the long-wave
asymptotic result A(k) ~ Ak? as k — 0+, in which the coefficient is calculated numer-
ically from the formulae above. There are several interesting features of the behavior of
A(k) for moderate k, linked to the presence of a countable family of compressive waves
for the wave speed at which there is also an undercompressive wave.
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3.4.1 Computation of the largest eigenvalue using the power method

For each of the traveling wave solutions, the values of the base profiles @ on the finite
difference grid are obtained by solving the traveling wave ODE, or by computing long-
time solutions of the one-dimensional PDE. Then the dominant eigenvalue A(k) and the
corresponding eigenfunction are obtained for various wavenumbers k by solving (3.2)
numerically. As in [BB97, BMFC98]|, we used a finite difference scheme, with an implicit
Euler time step to calculate 9, then extracted the eigenvalue from the time evolution
of 9 after the exponential decay or growth rate in time had appeared. In addition,
eigenvalues/functions were also confirmed by inverse vector iteration, a particularly use-
ful method for computing subdominant or pairs of complex conjugate eigenvalues as in
section 3.4.3.

We set parameters for the travelling waves by choosing v, = 0.1, u_ = 0.332051,
and shift to a reference frame (by subtracting a linear term from the flux) so that the
wave is stationary. For this choice of parameters, we find an infinite number of traveling
wave solutions, as observed in [BMS99], but, as discussed in Section 2.5, only every
other one is stable as a solution of the one-dimensional version of (3.27). For the same
parameters, there are two additional travelling waves: an undercompressive wave, from
ur =1 —u_ —uy = 0.567949 to u,, and a trailing compressive wave from u_ to urp.
(The latter wave is termed trailing because it corresponds to compressive waves that trail
the undercompressive wave in numerical simulations [BMS99] of the partial differential
equation with a certain range of initial data, in the limit that the two wave speeds
coincide.)

Figure 6 shows stability curves (graphs of A = A(k)) for three of the compressive
waves from u_ to uy (the first three in the ordering of [BMS99] that are stable to one-
dimensional perturbations), for the undercompressive wave and for the trailing wave.
The results for the first and third traveling wave are shown by solid lines, with addi-
tional symbols (bullets, pluses and diamonds) for the first, third, and fifth traveling wave.
A dot-dash curve represents the eigenvalue for the undercompressive wave, and a dashed
curve for the trailing compressive wave. We do not use a solid line for the fifth compres-
sive wave since it would coincide with the undercompressive and trailing compressive
wave curves. From the figure, we immediately observe that the compressive waves all
have a range of k£ > 0 for which they are unstable, whereas the undercompressive profile
is linearly stable against transverse perturbations.

Figure 6 also shows the following interesting phenomenon. Let A(k;¢) denote the
stability curve for the (2¢ — 1)th traveling wave (recall that the even numbered waves are
unstable to one dimensional perturbations), and let A,.(k) and As.(k) denote the domi-
nant eigenvalues for the undercompressive and trailing compressive waves, respectively.
In Fig. 6, observe that the graphs of A(k;3) and of max{\,.(k), A\i,(k)} are virtually
indistinguishable. This observation suggests that

lim A(k;¢) = max{A..(k), A (k) }. (3.28)

1—00

This unusual limiting behavior may be understood as follows: for large 7, the (2i—1)th
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Figure 6: The stability curves for general k. The results for the three simple compressive
waves are given by bullets, plus and diamonds. The curves for waves one and three are
filled in by solid lines. For the trailing compressive wave, the stability curve is given by
a dashed line, and a dot-dashed line for the undercompressive base profile.

traveling wave has a well-separated leading and trailing front which closely resembles a
double shock composed of a leading undercompressive shock, and a trailing compressive
shock having the same speed, each of which have traveling wave profiles. Correspond-
ingly, the compressive traveling wave trajectories in phase space (i.e., trajectories from
the middle equilibrium M to the bottom equilibrium B) are approximated by the union
of a trajectory from M to T of the trailing compressive wave and the trajectory from T
to B of the undercompressive trajectories at these parameter values. Hence the eigen-
values for these approximately composite waves are approximately given by the union
of the eigenvalues of the component undercompressive and trailing waves. These gen-
eral principles are familiar from the study of multi-hump solitary wave solutions in the
reaction—diffusion and nonlinear optics literature, [AJ1, AGJ1, L, S.1, S.2].

Though the proofs (from the solitary wave theory) in general break down for systems
of conservation laws, due to the lack of a spectral gap at A = 0, in the present, scalar
setting they can be applied unchanged, after the usual weighting transformation to re-
cover a spectral gap. (Alternatively, one could recall from Section 2.2 the fact that S*
and U~ remain spectrally separated at £k = 0, A = 0, and carry out a direct proof using
Evans function methods. These issues are discussed in [Z.3]).

Likewise, the eigenfunctions tend to be superpositions of the eigenfunctions (shifted
so they essentially do not overlap, in keeping with the trajectories themselves) of the
undercompressive and trailing compressive waves. The growth rate of the composition
is then governed by the maximum of the growth rates of each part.

This observation suggests the following property:
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At k = ky, where the two stability curves A,.(k), Ay (k) intersect, we might expect
a loss of smoothness in A(k;¢) for i — oo, and possibly for large enough finite i. The
behavior near k = k; is explored further in 3.4.3.

3.4.2 Comparison with long-wave asymptotics

Next, we examine the range 0 < k < 0.1 in greater detail, and compare A(k) for each
compressive wave with the asymptotic form A'k2, the coefficients A\! being calculated
separately for each wave from the formula (3.20). The results are shown in the log-log
plot of Figure 7 (left). In this figure, symbols correspond to computed values of A(k)
with triangles for the trailing wave, and circles, pluses, and diamonds for waves one three
and five respectively. The times symbols on the right are for the undercompressive wave.
The solid lines represent A'k? for compressive waves one and three. The line for wave
five is indistiguishable from that for wave three. The dashed line represents A'k? for the
trailing wave and the dot-dashed line for the undercompressive wave.

In Figure 7 (left), we note that the graphs of A(k;3),i = 1,2 clearly approach the
asymptotic curves as k — 0, and stay reasonably close throughout the range 0 < k£ < 0.1.
However, the graph of A(k, 3) switches over in this range of k£ from the asymptotic curve
to the curve for the compressive trailing wave. We conclude the following property:

Fig. 7 (left) suggests that the coefficient A} for the (2i — 1)th compressive traveling
wave has a limit and that

lim A} # A

21— 00
Moreover the numerics suggest that for larger ¢, the leading order long-wave asymptotics
agrees with the spectrum for a smaller range of k£ near zero. We conjecture that the
analytic expansion breaks down in the limit as & — oo where we are essentially linearizing
about a composite wave.

For the undercompressive wave, the linear stability analysis for general k can be
done with the same numerical method as for the compressive case. To compute the
coefficient of the long wave expansion A!, we have to start with (3.18), and use the non-
constant eigenfunction 7° satisfying (3.15) with boundary conditions (3.26). Note that
the argument presumes that A! < 0, which can, in part, be justified here by referring to
the numerical results 